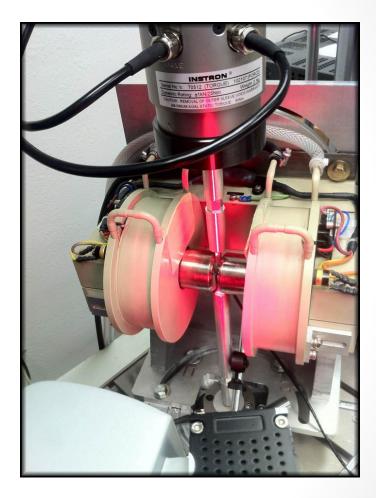
# Final Design Review and Project Proposal


November 27, 2012

Matt Garcia, Randy Jackson, Jeremy Mountain, Qian Tong, Hui Yao

College of Engineering, Forestry, and Natural Sciences Northern Arizona University

## Overview

- 1. Problem Statement
- 2. Designs
- 3. Analysis
- 4. Selected Design
- 5. Plans for Next Semester
- 6. Updated Timeline



## Problem Statement

**Need:** The eccentric loading of the test specimens causes fatigue failure.

**Goal:** Design an improved material testing fixture.

#### **Constraints:**

- 1. Specimen size (3 x 3 x 20) mm
- 2. Exposed Length ( 6 mm)
- 3. Grips cannot bite into specimen
- 4. Push rods and grips must be nonmagnetic
- Distance between magnets (10mm)
- 6. Magnetic Field (0.5 1.0 T )
- 7. Axial Alignment (50 μm)

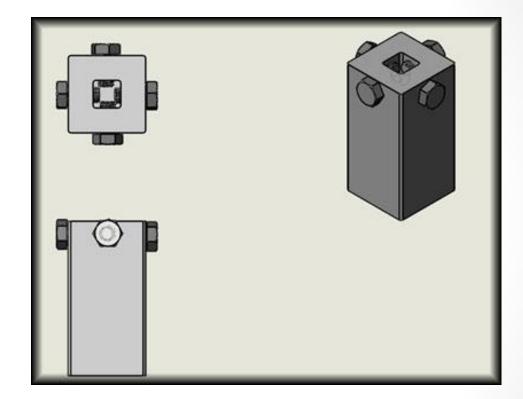
### **Objectives:**

| Objectives                        | Basis for<br>Measurement            | Units        |
|-----------------------------------|-------------------------------------|--------------|
| Axially Aligned                   | Distance from<br>Perfect Alginment  | μm           |
| Tension<br>Compression<br>Testing | Repeated Testing                    | # of Tests   |
| Damage<br>Specimen                | Cost of Specimen<br>Time to Replace | \$\$ / Month |
| Inexpensive                       | Machining Cost<br>Material Cost     | \$\$         |

## **Quality Function Deployment**

|                          |                        | Engineering Requirements |         |             |                   |                 |                |      |
|--------------------------|------------------------|--------------------------|---------|-------------|-------------------|-----------------|----------------|------|
|                          |                        | Strain                   | Tension | Compression | Exposed<br>Length | Grip Size       | Magnetic Field | Cost |
|                          | Does not break         | Х                        | Х       | Х           |                   |                 |                |      |
| . Juts                   | Tension Test           |                          | Х       |             |                   |                 |                |      |
| Customer<br>Requirements | Axial Loading          |                          | Х       | Х           |                   | Х               |                |      |
| tor                      | Inexpensive            |                          |         |             | Х                 |                 |                | Х    |
| Cus                      | Fits in Testing Device |                          |         |             | Х                 | Х               |                |      |
| Re                       | Magnetic Field         |                          |         |             | Х                 |                 | Х              |      |
|                          | See Specimen           |                          |         |             | Х                 | Х               |                |      |
|                          | Units                  | mm/mm                    | Ν       | N           | mm                | mm <sup>2</sup> | Т              | \$\$ |
|                          |                        | 1.2                      | 18      | 60          | 6                 | 100             | 1              | TBD  |
|                          |                        | Engineering Targets      |         |             |                   |                 |                |      |

Hui

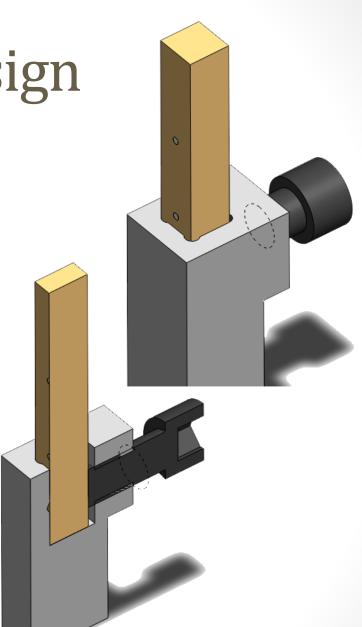

## **Generated** Tip Design

### Screw Tip

- 4 Set Screws
- Rubber Insert
- Allows Tension Tests

### Problem

• Axial Alignment





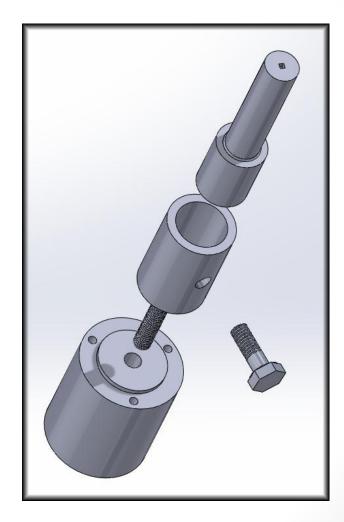

## Selected Tip Design

### Screw Tip

- 1 Set Screw
- Rubber Insert
- Allows Tension Tests
- Axial Alignment



Jeremy


## **Generated Base Design**

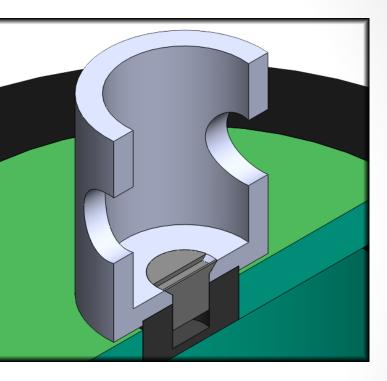
### Base

- Tight Sleeve / Pushrod tolerances
- No Adjustment

### Problem

 Inadequate screw tolerance




[7]

Jeremy

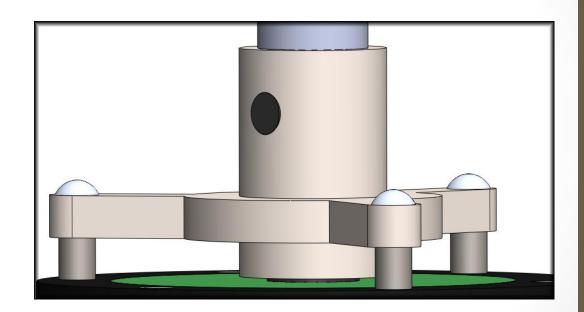
## Selected Base Design

### Base

- No Alignment Screw
- Uses Existing Alignment
- Tension Tests
- Upper/Lower Fixture



Jeremy


## **Generated Base Design**

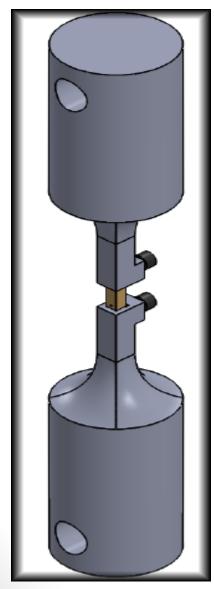
### Base

- 3 Securing Screws
- Securing Pin
- No Adjustment

### Problem

 No Force Analysis Possible

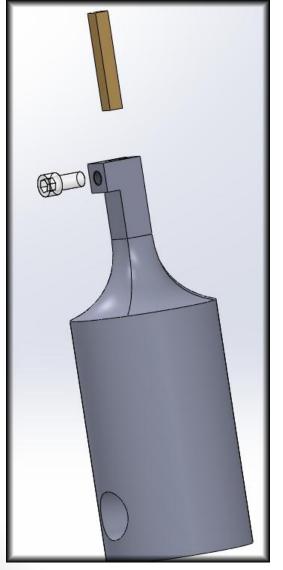



g

## **Modified Base Design**

### Alternate Upper Fixture

- No Force Analyzer
- Securing Pin
- Allows Tension Tests
- Non Adjustable


## **Material Analysis**



### Aluminum 6061 – T6

- A precipitation hardening aluminum alloy.
- It has good mechanical properties.
- It is one of the most common alloys of aluminum for general purpose use
- 6061 T1
- 6061 T3
- 6061 T4
- 6061 T5

## Material Analysis – Cont.



### Nylon Type 66

- One of the most commonly used polymers.
- Easy and cheap to get.
- Less Yield Strength than aluminum alloy

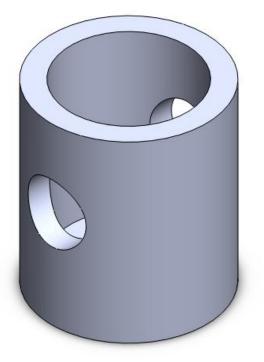
### Other Considerations

- Brass
- Aluminum
- Rubber Insert



## **Compression Analysis**

**Smallest Area** 


| Length | 3        | mm              |
|--------|----------|-----------------|
| Width  | 3        | mm              |
| A #0.0 | 9        | mm <sup>2</sup> |
| Area   | 0.000009 | m <sup>2</sup>  |

| Force (N) | Stress (N/m <sup>2</sup> ) |
|-----------|----------------------------|
| 10        | 1.111E+06                  |
| 20        | 2.222E+06                  |
| 30        | 3.333E+06                  |
| 40        | 4.444E+06                  |
| 50        | 5.556E+06                  |
| 60        | 6.667E+06                  |
| 70        | 7.778E+06                  |
| 80        | 8.889E+06                  |
| 90        | 1.000E+07                  |
| 100       | 1.111E+07                  |

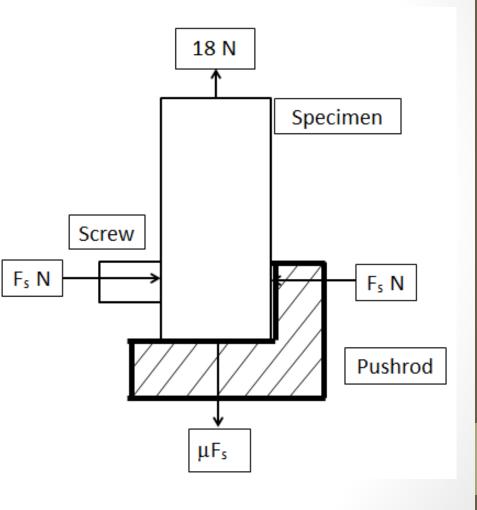
13

Randy

## **Bearing Analysis**



|                        | Pin<br>10mm     | Pin<br>15mm     | Pin<br>20mm     | Pin<br>25mm     |
|------------------------|-----------------|-----------------|-----------------|-----------------|
| Outer Diameter<br>(mm) | Stress<br>(MPa) | Stress<br>(MPa) | Stress<br>(MPa) | Stress<br>(MPa) |
| 31.0                   | 16.00           | 10.67           | 8.00            | 6.40            |
| 32.0                   | 8.00            | 5.33            | 4.00            | 3.20            |
| 33.0                   | 5.33            | 3.56            | 2.67            | 2.13            |
| 34.0                   | 4.00            | 2.67            | 2.00            | 1.60            |
| 35.0                   | 3.20            | 2.13            | 1.60            | 1.28            |
| 36.0                   | 2.67            | 1.78            | 1.33            | 1.07            |
| 37.0                   | 2.29            | 1.52            | 1.14            | 0.91            |
| 38.0                   | 2.00            | 1.33            | 1.00            | 0.80            |
| 39.0                   | 1.78            | 1.19            | 0.89            | 0.71            |
| 40.0                   | 1.60            | 1.07            | 0.80            | 0.64            |


Randy

## Screw Analysis

Sum of the forces:

$$\sum F_{y} = 18N - \mu F_{s} = 0$$
$$F_{s} = \frac{18}{\mu}N$$

| F <sub>s</sub> [N] | Friction |
|--------------------|----------|
| 120.0              | 0.2      |
| 36.0               | 0.5      |
| 21.2               | 0.9      |
| 15.0               | 1.2      |



Randy

## Screw Analysis – Cont.

#### Screw: M3 x 0.5 x 6 mm

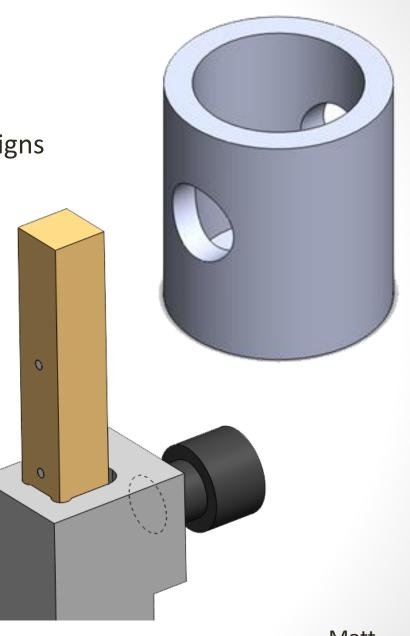
| Major<br>Diam. D<br>[mm] | Minor<br>Diam. dr<br>[mm] | Thread<br>Engagement<br>Length Le<br>[mm] | Pitch Diam.<br>dp [mm] | Pitch<br>p [mm] | External<br>Shear Area<br>[mm <sup>2</sup> ] | Internal<br>Shear Area<br>[mm <sup>2</sup> ] |
|--------------------------|---------------------------|-------------------------------------------|------------------------|-----------------|----------------------------------------------|----------------------------------------------|
| 3.000                    | 2.385                     | 3.500                                     | 2.567                  | 0.500           | 18.623                                       | 32.986                                       |

|                                      | Nylo                | n Type       | 66                 | E                   | Brass        |                    |
|--------------------------------------|---------------------|--------------|--------------------|---------------------|--------------|--------------------|
|                                      | Yield Str.<br>[MPa] | Force<br>[N] | Coeff.<br>Friction | Yield Str.<br>[MPa] | Force<br>[N] | Coeff.<br>Friction |
|                                      | 45                  | 120          | 0.15               | 130                 | 51.43        | 0.35               |
| External Thread<br>Force to Fail [N] |                     | 838.1        |                    | 2                   | 421.0        |                    |
| Internal Thread<br>Shear to Fail [N] | 8                   | 8081.6       |                    | 8                   | 081.6        |                    |

Randy

## **Cost Analysis**

| Туре  | Material       | Cost                    |
|-------|----------------|-------------------------|
| Main  | Aluminum Alloy | 0.6-0.9<br>\$/lb        |
| Screw | Nylon          | 0.005-0.006<br>\$/piece |


### **Other Considerations**

- Copper
- Lead
- Magnesium

т,

## The Next Steps

- 1. Continue with Proposed Designs
- 2. Regular Customer Input
- 3. Manufacturing
- 4. Build Prototype
- 5. Test Prototype
- 6. Analysis and Refinement
- 7. Produce Final Product



## Conclusion

- 1. Problem Statement
- 2. Designs
- 3. Analysis
- 4. Future Plans



## **Updated** Timeline

|    | Task Name                                                                         | 6, '12 Sep 30, '12 Oct 14, '12 Oct 28, '12 Nov 11, '12 Nov 25, '<br>S W S T M F T S W S T M F T S W S T M |
|----|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1  | Groups Assigned                                                                   | \$ 9/26                                                                                                   |
| 2  | Contact Client, set up meeting                                                    |                                                                                                           |
| 3  | Meet with Client                                                                  | <mark>∛ 9/</mark> 27                                                                                      |
| 4  | Work on and update Website                                                        |                                                                                                           |
| 5  | Presentation 1 - Needs Identification, Product Specification, and<br>Project Plan | 10/4                                                                                                      |
| 6  | Report 1                                                                          | <b>♦</b> 10/5                                                                                             |
| 7  | Meet with Client regarding design ideas                                           | <b>6</b>                                                                                                  |
| 8  | Modify designs, select best design                                                | i i i i i i i i i i i i i i i i i i i                                                                     |
| 9  | Presentation 2 - Concept Generation and Selection                                 | <b>↓</b> 10/23                                                                                            |
| 10 | Report 2 - Concept Generation and Selection                                       | <b>¥</b> 10/26                                                                                            |
| 11 | Engineering Analysis                                                              |                                                                                                           |
| 12 | Presentation 3 - Engineering Analysis                                             | <b>♦</b> _11/6                                                                                            |
| 13 | Report 3 - Engineering Analysis                                                   | <b>\$</b> 11/9                                                                                            |
| 14 | Final Design Review and Project Proposal                                          |                                                                                                           |
| 15 | Presentation - Final Design Review and Project Proposal                           | <b>↓</b> 11/2                                                                                             |
| 16 | Final Design Review and Project Proposal                                          | 🔖 11                                                                                                      |
| 17 | Meet with Client                                                                  |                                                                                                           |

Matt

## References

http://nau.edu/CEFNS/Engineering/Mechanical/Faculty-Staff/

http://www.solidworks.com/

http://www.engineershandbook.com/Tables/frictioncoefficients.htm

http://www.engineersedge.com

http://www.alibaba.com

http://www.tcdcinc.com

http://www.engineeringtoolbox.com/friction-coefficients-d\_778.html

http://www.youtube.com/watch?v=sPwURRG9\_Gs

<u>http://nau.edu/Research/Feature-Stories/NAU-on-Leading-Edge-of-</u> <u>Smart-Materials-Research/</u>

Shigley's Mechanical Engineering Design, 9<sup>th</sup> Edition.

Dr. Constantin Ciocanel